Demonstrating Density: Who Knew They Could Be So Dense?


Tami O'Connor, Educational Innovationsby:  Tami O’Connor

Density is not typically an easy concept for most middle school students and even more difficult for younger students, but it doesn’t need to be.  We all know that D=m/V, but the easiest way I found to explain it to my students was to have them visualize a common dilemma in my home immediately preceding a vacation.  For years, as a poor starving teacher, I only had one suitcase, and it was actually a hand-me-down from my mother.  It was a medium sized Samsonite, hard cased piece of luggage.  When approaching the topic of density in my classroom, down from the attic it came.

My explanation began with an imaginary week-long summer vacation to a low-key resort.  The class and I would brainstorm the items I needed to pack for my trip.  Generally, the list included items such as a few bathing suits, shorts, t-shirts, a pair of flip flops, some PJs, underwear and a few toiletries.  It was obvious by looking at the size of my suitcase that in addition to my meager belongings, I could have probably also fit one of my students in my bag…  ok, perhaps one of the smaller kids.

I explained that when I closed the suitcase, it was hard to see, simply by looking at it, how heavy it was.  The lesson didn’t stop there.  We now planned my one-week ski vacation to Vermont during the February break.  Once again, my students and I made up my pack list.  The list included a couple of heavy sweaters, long johns, gloves, a hat, boots… as you can imagine, the list went on and on.  The question was, where to put it all.  Of course, since I had only one suitcase, the answer was easy. Read the rest of this entry »


Two Prisms: Four Demos


Marty Sagendorfby: Martin Sagendorf

Most everyone knows that an equilateral prism will refract white light into its constituent colors: a spectrum ranging from red to violet.  But, if one uses two prisms, there’s much more to be discovered.

All that’s required:

Read the rest of this entry »


Gro-Beast Alligators


Jill BrownBy : Jill Brown

Each year I purchase the Gro-Beast Alligators from Educational Innovations for my Fourth Grade class.  These growing alligators start at about three inches long and grow to over a foot long when placed in water!  From this one item, I have developed lesson plans that incorporate Math, Science, Reading, Social Studies, Writing, Technology, and Language Arts!Gro-Beast Alligator

Observation is the first action taken by learners to acquire new information about an organism; therefore, the first thing my students do is observe their polymer alligator.  The students in the picture below are in the process of measuring the length, weight, circumference, and area of their polymer alligators. Students in my class also trace their alligators on graph paper then they calculate the area of each and eventually compare the area of their small (dehydrated) alligator to that of their fully grown alligator. (Math & Writing & Language).  These measurements are compiled into a line graph for each student’s crocodile which aids students in making predictions about the rate of future growth of their growing reptile.  Read the rest of this entry »


How to Make a Rocket (Scientist)


Tami O'Connor, Educational Innovationsby:  Tami O’Connor

A few months ago I had occasion to conduct two hands-on workshops for elementary and middle school teachers at the NSTA National Convention in San Francisco on behalf of Educational Innovations.  One presentation focused on film canister rockets.  This is a tried-and-true way to teach Newtown’s First and Third Laws of Motion and also brings to light concepts such as the four forces of flight; thrust, drag, weight, and lift.  It also reinforces instruction on 3-D shapes and 2-D plane figures such as circles, cones, cylinders, rectangles, and triangles.

How to Make a Rocket Scientist - Educational Innovations BlogI presented the lesson to the teachers in much the same way I would to my students.  The first thing we did was to brainstorm the features all rockets have.  After a bit of discussion it was agreed that they all have a nose cone, a cylindrical body, fins, and an engine.  I then handed out a paper template imprinted with the pattern of a nose cone and fins, a regular 8½ x 11 sheet of white paper, a piece of goldenrod paper, and a white translucent film canister.  Also required are scissors, tape, ¼ piece of an Alka Seltzer tablet, and paper towels.

The only canister that works with this rocket is the type that has the lid that fits snugly inside the canister.  The canisters that have a lid that wraps around the outside rim, however, will not allow enough pressure to build up inside the chamber.

How to Make a Rocket

The first step in building a film canister rocket is to construct the body of the rocket.  The easiest way is to curl the white 8 ½ x 11 paper into a cylindrical shape using the film canister (without the top) as a guide.  The paper can be rolled around the film canister and then taped along the edges.  The easiest way to recover the film canister is to blow into one end of the rolled cylinder, forcing the canister out the other end. Read the rest of this entry »


Newton’s Apple


by: Matthew Morris

Newton was a revolutionary thinker of his time. He is responsible for the three laws of motion that we still use today;

1. Objects that are not in motion remain stationary unless acted upon by another force.

2. There is a direct relationship between the force acted upon the object and the mass of that object times the acceleration the object feels (F=ma).

3. For every action there is an equal and opposite reaction.

Nobody before Newton could explain why objects acted the way they did, but with these three laws he quantified movement in terms everyone could understand.

But there was a problem with his theory; if all motion had to be caused by some force acting on it, then why do objects fall towards the earth when you release them from a fixed position? This free falling object was in fact free, meaning free of outside forces acting upon it (besides wind resistance). There were no visible forces acting upon that object. So why do they move downward if nothing is acting on it? But Newton explained this motion with gravity. He said that gravity is a force that the earth has upon all objects, something invisible that pulls us down at all times at a constant acceleration. There is a myth that the way Newton thought of the idea of gravity was when he was thinking about it under an apple tree when an apple fell on Newton’s head and at that moment, he figured out that there must be a force pulling the object down. This is also why apples are used to demonstrate Newton’s force, but no one knows definitively if the myth is true or not. Read the rest of this entry »