Make Your Own Clock Faces


Marty Sagendorfby: Martin Sagendorf

A Definition:

Clocks measure time – it can be a continuous measure of events passing or the measure of the interval between two events.

Of Hours:

After years of evolution, our modern clocks now divide the day into 24 equal length hours.  And, as we know, there are two systems in use today: Americans use the “double-twelve” system while the rest of the world uses the 24 hour system.

As An Aside:

The word “hour’ comes from the Latin and Greek words meaning season, or time of day.  A “minute” from the medieval Latin pars minuta prima (first minute or small part), originally described the one-sixtieth of a unit in the Babylonian system of sexagesimal fractions.  And “second” from partes minutae secundae, was a further subdivision on the base of sixty – i.e. “a second minute”.  (ref. Pg. 42 The Discoverers by Daniel J. Boorstin)

The “Double-Twelve” Clock Face:

Has 12 at the top – probably because at noon the sun is at its highest point in the sky.

But…

We can make a clock with 12 o’clock anywhere we wish and the clock will still work just fine. Read the rest of this entry »


Gro-Beast Alligators


Jill BrownBy : Jill Brown

Each year I purchase the Gro-Beast Alligators from Educational Innovations for my Fourth Grade class.  These growing alligators start at about three inches long and grow to over a foot long when placed in water!  From this one item, I have developed lesson plans that incorporate Math, Science, Reading, Social Studies, Writing, Technology, and Language Arts!Gro-Beast Alligator

Observation is the first action taken by learners to acquire new information about an organism; therefore, the first thing my students do is observe their polymer alligator.  The students in the picture below are in the process of measuring the length, weight, circumference, and area of their polymer alligators. Students in my class also trace their alligators on graph paper then they calculate the area of each and eventually compare the area of their small (dehydrated) alligator to that of their fully grown alligator. (Math & Writing & Language).  These measurements are compiled into a line graph for each student’s crocodile which aids students in making predictions about the rate of future growth of their growing reptile.  Read the rest of this entry »


Soil Porosity, Permeability and Retention Experiments


Cynthia Houseby: Cynthia House

Demonstration Materials:

  • 125 ml graduated cylinder or similar item
  • ~100 ml of pea gravel or small marbles
  • kitchen sponge
  • tap  water

Experiment Materials:

  • preforms and racks (three preforms/student or group)
  • fine gravel  such as aquarium gravel (~ 30 ml/student or group)
  • coarse sand* (~ 30 ml/student or group)
  • fine sand* (~ 30 ml/student or group)
  • small plastic cups ~ 100 ml capacity
  • squares of tulle (“bridal illusion”) and organza, ~ 10 cm x 10 cm
  • rubber bands
  • electronic balance (capacity at least 100 gm)
  • one pound margarine tub or similarly sized plastic cup per balance**
  • stopwatch or count-up timer (MyChron Student Timer)
  • 125 ml graduated cylinder or similar item
  • calculators
  • tap water

MyChron Student Timer

* Home centers sell sand for sand boxes, landscaping, paving, mortar etc.  Beaches are another source, although you may encounter undesirable contamination. Sifting non-homogeneous sand with a fine kitchen strainer may yield two usable grades of sand. 

** secondary containment to prevent accidental spillage of water onto the balance

Background Soil Vocabulary:

Porosity is the measure of how much groundwater a soil can hold, permeability is the measure of how quickly water passes through a soil, while retention is the measure of how much water stays behind.  Even elementary students can relate these concepts to their everyday lives. They observe that some areas in their yards or school grounds form puddles while others drain quickly after a rainstorm. They may wonder why one neighbor’s garden and yard remains lush and green although a sprinkler is rarely used. Children in communities dependent upon well water can understand the importance of replenishing the water table. In most rural and many suburban areas, homes use septic tanks and drain fields to process household wastewater. The “water cycle” is a topic in elementary science curricula. There are many excellent age-appropriate online sources for information on these topics including the United States Geological Survey (USGS) and the GLOBE program. Read the rest of this entry »


How to Make a Rocket (Scientist)


Tami O'Connor, Educational Innovationsby:  Tami O’Connor

A few months ago I had occasion to conduct two hands-on workshops for elementary and middle school teachers at the NSTA National Convention in San Francisco on behalf of Educational Innovations.  One presentation focused on film canister rockets.  This is a tried-and-true way to teach Newtown’s First and Third Laws of Motion and also brings to light concepts such as the four forces of flight; thrust, drag, weight, and lift.  It also reinforces instruction on 3-D shapes and 2-D plane figures such as circles, cones, cylinders, rectangles, and triangles.

How to Make a Rocket Scientist - Educational Innovations BlogI presented the lesson to the teachers in much the same way I would to my students.  The first thing we did was to brainstorm the features all rockets have.  After a bit of discussion it was agreed that they all have a nose cone, a cylindrical body, fins, and an engine.  I then handed out a paper template imprinted with the pattern of a nose cone and fins, a regular 8½ x 11 sheet of white paper, a piece of goldenrod paper, and a white translucent film canister.  Also required are scissors, tape, ¼ piece of an Alka Seltzer tablet, and paper towels.

The only canister that works with this rocket is the type that has the lid that fits snugly inside the canister.  The canisters that have a lid that wraps around the outside rim, however, will not allow enough pressure to build up inside the chamber.

How to Make a Rocket

The first step in building a film canister rocket is to construct the body of the rocket.  The easiest way is to curl the white 8 ½ x 11 paper into a cylindrical shape using the film canister (without the top) as a guide.  The paper can be rolled around the film canister and then taped along the edges.  The easiest way to recover the film canister is to blow into one end of the rolled cylinder, forcing the canister out the other end. Read the rest of this entry »


Newton’s Apple


by: Matthew Morris

Newton was a revolutionary thinker of his time. He is responsible for the three laws of motion that we still use today;

1. Objects that are not in motion remain stationary unless acted upon by another force.

2. There is a direct relationship between the force acted upon the object and the mass of that object times the acceleration the object feels (F=ma).

3. For every action there is an equal and opposite reaction.

Nobody before Newton could explain why objects acted the way they did, but with these three laws he quantified movement in terms everyone could understand.

But there was a problem with his theory; if all motion had to be caused by some force acting on it, then why do objects fall towards the earth when you release them from a fixed position? This free falling object was in fact free, meaning free of outside forces acting upon it (besides wind resistance). There were no visible forces acting upon that object. So why do they move downward if nothing is acting on it? But Newton explained this motion with gravity. He said that gravity is a force that the earth has upon all objects, something invisible that pulls us down at all times at a constant acceleration. There is a myth that the way Newton thought of the idea of gravity was when he was thinking about it under an apple tree when an apple fell on Newton’s head and at that moment, he figured out that there must be a force pulling the object down. This is also why apples are used to demonstrate Newton’s force, but no one knows definitively if the myth is true or not. Read the rest of this entry »