The Speed of the Bubble Apparatus


Cynthia Houseby: Cindy House

Bubbles in tubes offer many advantages over spheres on ramps for velocity and acceleration experiments:

  • The bubble stays in the tube! There are no escaped marbles to chase down.
  • The bubble moves more slowly than a marble, permitting more accurate determination of elapsed time.
  • Results are highly reproducible.
  • Many data points can be collected in a short period of time.

The Speed of the Bubble Apparatus | Educational Innovations

A Speed of the Bubble Apparatus to hold and protect the tube is easy to construct from scrap and/or inexpensive materials. It enables even very young students to obtain highly reproducible data quickly. It also protects the tubes from being damaged if dropped or bumped.  Plans and suggested materials are included in this blog. The following experiment is one I use with the elementary students in our after school science club. Read the rest of this entry »


No-Pop Bubbles!


Ron Perkins, Educational Innovationsby Ron Perkins

At first glance No-Pop Bubbles may seem like any other bubbles.  While the bubble solution is a bit more viscous, one blows No-Pop Bubbles like any other bubble.  The small bubble wand suspends a bubble film which, when air is blown through it, releases small bubbles into the air.

These bubbles, however, are no ordinary bubbles.  No-Pop Bubble solution begins as a regular soap and water bubble solution.  Added to this solution is a small amount of a non-toxic water soluble polymer.  When No-Pop Bubbles are first blown, the bubbles behave like ordinary bubbles.  As the water evaporates from the bubble’s surface, however, an extremely thin plastic ‘bubble skeleton’ remains.  It is this plastic bubble skeleton which has the properties for which No-Pop Bubbles are named. Read the rest of this entry »


Science Experiments With Japanese Yen Coins


Ron Perkins, Educational Innovationsby: Ron Perkins

Who knew that a single coin could be used for so many classroom science activities!  You can demonstrate concepts such as surface tension, buoyancy, and even eddy currents with Japanese yen coins!

Surface Tension: Even though aluminum has a density of 2.7 gm/cm3, and the density of water is 1 g/cm3, aluminum yen coins can float on the surface of the water!

Surface tension is a physical property of water.  It is caused by cohesion, which is the attraction of like molecules.  Water molecules are made up of two hydrogen atoms and one oxygen atom.  The “stickiness” of water is caused by hydrogen bonding.  This hydrogen bonding pulls the water molecules towards one another and forms a sort of “skin” on the surface of the water.

Japanese Yen Coins Experiment 1:

Science Experiments With Japanese Yen Coins - Educational Innovations BlogUsing a bent paper clip or a plastic fork, gently lower the flat side of the coin onto the surface of a pan or cup of water and remove the clip or fork. The coin should rest on the surface of the water. Read the rest of this entry »